Publication
This page contains a list of my publications in a chronological order. If you have questions regarding any of these publications, please do not hesitate to contact me directly.
My bibliographic information are also available on Google Scholar, DBLP, and Semantic Scholar.
2023
-
Towards Empirical Process Theory for Vector-Valued Functions: Metric Entropy of Smooth Function Classes
Junhyung Park - Krikamol Muandet
Algorithmic Learning Theory (ALT 2023) -
Gated Domain Units for Multi-source Domain Generalization
Simon Föll - Alina Dubatovka - Eugen Ernst - Martin Maritsch - Patrik Okanovic - Gudrun Thäter - Joachim Buhmann - Felix Wortmann - Krikamol Muandet
Preprint -
Impossibility of Collective Intelligence
Krikamol Muandet
Preprint -
Learning Counterfactually Invariant Predictors
Francesco Quinzan - Cecilia Casolo - Krikamol Muandet - Yucen Luo - Niki Kilbertus
Preprint -
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi - Krikamol Muandet - Simon Kornblith - Bernhard Schölkopf - Been Kim
Preprint -
Instrumental Variable Regression via Kernel Maximum Moment Loss
Rui Zhang - Masaaki Imaizumi - Bernhard Schölkopf - Krikamol Muandet
Journal of Causal Inference (JCI)
2022
-
A Witness Two-Sample Test
Jonas Kübler - Wittawat Jitkrittum - Bernhard Schölkopf - Krikamol Muandet
International Conference on Artificial Intelligence and Statistics (AISTATS 2022) -
Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions
Heiner Kremer - Jia-Jie Zhu - Krikamol Muandet - Bernhard Schölkopf
International Conference on Machine Learning (ICML 2022) -
AutoML Two-Sample Test
Jonas Kübler - Vincent Stimper - Simon Buchholz - Krikamol Muandet - Bernhard Schölkopf
Neural Information Processing Systems (NeurIPS 2022)
2021
-
An Optimal Witness Function for Two-Sample Testing
Jonas Kübler - Wittawat Jitkrittum - Bernhard Schölkopf - Krikamol Muandet
Preprint -
Maximum Moment Restriction for Instrumental Variable Regression
Rui Zhang - Masaaki Imaizumi - Bernhard Schölkopf - Krikamol Muandet
Preprint -
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park - Uri Shalit - Bernhard Schölkopf - Krikamol Muandet
International Conference on Machine Learning (ICML 2021) -
Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction
Afsaneh Mastouri - Yuchen Zhu - Limor Gultchin - Anna Korba - Ricardo Silva - Matt Kusner - Arthur Gretton - Krikamol Muandet
International Conference on Machine Learning (ICML 2021) -
Counterfactual Mean Embeddings
Krikamol Muandet - Motonobu Kanagawa - Sorawit Saengkyongam - Sanparith Marukatat
Journal of Machine Learning Research (JMLR)
2020
-
Grasping Field: Learning Implicit Representations for Human Grasps
Korrawe Karunratanakul - Jinlong Yang - Yan Zhang - Michael Black - Krikamol Muandet - Siyu Tang
International Conference on 3D Vision (3DV 2020)
* Best Paper Award -
Fair Decisions Despite Imperfect Predictions
Niki Kilbertus - Manuel Gomez Rodriguez - Bernhard Schölkopf - Krikamol Muandet - Isabel Valera
International Conference on Artificial Intelligence and Statistics (AISTATS 2020) -
Kernel Conditional Density Operators
Ingmar Schuster - Mattes Mollenhauer - Stefan Klus - Krikamol Muandet
International Conference on Artificial Intelligence and Statistics (AISTATS 2020) -
A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems with Kernel Probabilistic Programming
Jia-Jie Zhu - Krikamol Muandet - Moritz Diehl - Bernhard Schölkopf
World Congress of the International Federation of Automatic Control (IFAC 2020) -
MATE: Plugging in Model Awareness to Task Embedding for Meta Learning
Xiaohan Chen - Zhangyang Wang - Siyu Tang - Krikamol Muandet
Neural Information Processing Systems (NeurIPS 2020) -
Dual Instrumental Variable Regression
Krikamol Muandet - Arash Mehrjou - Si Kai Lee - Anant Raj
Neural Information Processing Systems (NeurIPS 2020) -
Learning Kernel Tests Without Data Splitting
Jonas Kübler - Wittawat Jitkrittum - Bernhard Schölkopf - Krikamol Muandet
Neural Information Processing Systems (NeurIPS 2020) -
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park - Krikamol Muandet
Neural Information Processing Systems (NeurIPS 2020) -
Eigendecompositions of Transfer Operators in Reproducing Kernel Hilbert Spaces
Stefan Klus - Ingmar Schuster - Krikamol Muandet
Journal of Nonlinear Science -
Kernel Conditional Moment Test via Maximum Moment Restriction
Krikamol Muandet - Wittawat Jitkrittum - Jonas Kübler
The Conference on Uncertainty in Artificial Intelligence (UAI 2020)
2019
-
Kernel-Guided Training of Implicit Generative Models with Stability Guarantees
Arash Mehrjou - Wittawat Jitkrittum - Krikamol Muandet - Bernhard Schölkopf
Preprint -
Low-rank Random Tensor for Bilinear Pooling
Yan Zhang - Krikamol Muandet - Qianli Ma - Heiko Neumann - Siyu Tang
Preprint -
Private Causal Inference using Propensity Scores
Si Kai Lee - Luigi Gresele - Mijung Park - Krikamol Muandet
Preprint -
Local Temporal Bilinear Pooling for Fine-grained Action Parsing
Yan Zhang - Siyu Tang - Krikamol Muandet - Christian Jarvers - Heiko Neumann
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2019) -
Quantum Mean Embedding of Probability Distributions
Jonas Kübler - Krikamol Muandet - Bernhard Schölkopf
Physical Review Research (PRR)
2018
-
Counterfactual Mean Embeddings
Krikamol Muandet - Motonobu Kanagawa - Sorawit Saengkyongam - Sanparith Marukatat
Preprint -
Design and Analysis of the NIPS 2016 Review Process
Nihar Shah - Behzad Tabibian - Krikamol Muandet - Isabelle Guyon - Ulrike von Luxburg
Journal of Machine Learning Research (JMLR)
2017
-
Dagstuhl Seminar: New Directions for Learning with Kernels and Gaussian Processes
Arthur Gretton - Philipp Hennig - Carl Rasmussen - Bernhard Schölkopf
Report of Dagstuhl Seminar 16481 (contributed talk on kernel mean shrinkage estimators) -
Kernel Mean Embedding of Distributions: A Review and Beyond
Krikamol Muandet - Kenji Fukumizu - Bharath Sriperumbudur - Bernhard Schölkopf
Foundations and Trends® in Machine Learning (FnT ML) -
Minimax Estimation of Kernel Mean Embeddings
Ilya Tolstikhin - Bharath Sriperumbudur - Krikamol Muandet
Journal of Machine Learning Research (JMLR)
2016
-
TerseSVM : A Scalable Approach for Learning Compact Models in Large-scale Classification
Rohit Babber - Krikamol Muandet - Bernhard Schölkopf
SIAM International Conference on Data Mining (SDM 2016)
2015
-
Towards a Learning Theory of Cause-Effect Inference
David Lopez-Paz - Krikamol Muandet - Bernhard Schölkopf - Ilya Tolstikhin
International Conference on Machine Learning (ICML 2015) -
Kernel Mean Shrinkage Estimators
Krikamol Muandet - Bharath Sriperumbudur - Kenji Fukumizu - Arthur Gretton - Bernhard Schölkopf
Journal of Machine Learning Research (JMLR) -
Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations
Bernhard Schölkopf - Krikamol Muandet - Kenji Fukumizu - Jonas Peters
Statistics and Computing (STAT COMPUT) -
From Points to Probability Measures: Statistical Learning on Distributions with Kernel Mean Embedding
Krikamol Muandet
Ph.D. Thesis. Department of Computer Science, University of Tübingen
2014
-
Kernel Mean Estimation and Stein Effect
Krikamol Muandet - Kenji Fukumizu - Bharath Sriperumbudur - Arthur Gretton - Bernhard Schölkopf
International Conference on Machine Learning (ICML 2014) -
The Randomized Causation Coefficient
David Lopez-Paz - Krikamol Muandet - Benjamin Recht
Journal of Machine Learning Research (JMLR) -
Kernel Mean Estimation via Spectral Filtering
Krikamol Muandet - Bharath Sriperumbudur - Bernhard Schölkopf
Neural Information Processing Systems (NeurIPS 2014) -
Single-Source Domain Adaptation with Target and Conditional Shift
Kun Zhang - Bernhard Schölkopf - Krikamol Muandet - Zhikun Wang - Zhi-Hua Zhou - Claudio Persello
Regularization, Optimization, Kernels, and Support Vector Machines -
A Permutation-based Kernel Conditional Independence Test
Gary Doran - Krikamol Muandet - Kun Zhang - Bernhard Schölkopf
The Conference on Uncertainty in Artificial Intelligence (UAI 2014)
2013
-
Domain Adaptation under Target and Conditional Shift
Kun Zhang - Bernhard Schölkopf - Krikamol Muandet - Zhikun Wang
International Conference on Machine Learning (ICML 2013) -
Domain Generalization via Invariant Feature Representation
Krikamol Muandet - David Balduzzi - Bernhard Schölkopf
International Conference on Machine Learning (ICML 2013) -
One-class Support Measure Machines for Group Anomaly Detection
Krikamol Muandet - Bernhard Schölkopf
The Conference on Uncertainty in Artificial Intelligence (UAI 2013)
2012
-
Learning from Distributions via Support Measure Machines
Krikamol Muandet - Kenji Fukumizu - Francesco Dinuzzo - Bernhard Schölkopf
Neural Information Processing Systems (NeurIPS 2012)
* Spotlight Talk -
Hilbert Space Embedding for Dirichlet Process Mixtures
Krikamol Muandet
NeurIPS2012 Workshop on Confluence between Kernel Methods and Graphical Models
2010
-
Infinite Independent Subspace Analysis
Krikamol Muandet - Yee Whye Teh
M.Sc. Thesis, Department of Computer Science, University College London, 2010.
2009
-
Query Selection via Weighted Entropy for Graph-Based Semi-supervised Classification
Krikamol Muandet - Sanparith Marukatat - Cholwich Nattee
Asian Conference on Machine Learning (ACML 2009) -
Robust Graph Hyperparameter Learning for Graph Based Semi-supervised Classification
Krikamol Muandet - Sanparith Marukatat - Cholwich Nattee
Pacific-Asia Conference on Knowledge Discovery and Data Mining Conference (PAKDD 2009)
2008
-
PACS (Picture Archiving Communication System) for Dentistry
Nakintorn Patanachai - Bunyarit Uyyanonvara - Chanjira Sinthanayothin - Wichit Tharanon - Palakon Sompot - Krikamol Muandet
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON 2008)