Krikamol Muandet

Empirical Inference Department
Max Planck Institute for Intelligent Systems

November 11, 2014

Informally, a function f is a one-way function if

- 1. The description of *f* is publicly known and does not require any secret information for its operation.
- 2. Given x, it is easy to compute f(x).
- 3. Given y, in the range of f, it is hard to find an x such that f(x) = y.

Informally, a function f is a one-way function if

- 1. The description of *f* is publicly known and does not require any secret information for its operation.
- 2. Given x, it is easy to compute f(x).
- 3. Given y, in the range of f, it is hard to find an x such that f(x) = y.

Formal Definition

A function f is one-way if f can be computed by a polynomial time algorithm, but for every randomized algorithm A that runs in time polynomial in n = |x|, every polynomial p(n), and all sufficiently large n

$$Pr[f(A(f(x))) = f(x)] < \frac{1}{p(n)}$$

where the probability is over the choice of x from the uniform distribution on $\{0,1\}^n$, and the randomness of A.

The existence of one-way functions would imply $P \neq NP$.

Examples of Conjectured One-way Functions

One-way functions

- 1. Factoring problem: f(p, q) = pq for randomly chosen primes p, q.
- 2. Discrete logarithm problem:

$$f(p, g, x) = \langle p, g, g^x (\mod p) \rangle$$

for g a generator of \mathbb{Z}_p^* for some prime p.

- 3. Discrete root extraction problem.
- 4. Subset sum problem: $f(a, b) = \langle \sum_i a_i b_i, b \rangle$, for $a_i \in \{0, 1\}$ and *n*-bit integers b_i .
- 5. Quadratic residue problem.

Not one-way functions

- 1. Constant function: f(x) = 0.
- 2. Many-to-one functions (not sufficient to be one-way!).

Privacy in Machine Learning

Two important scenarios:

- 1. **Interactive**: A "query-response model"
- 2. **Non-interactive**: Given a dataset $X = (X_1, ..., X_n)$, the goal is to produce a sanitized dataset $Z = (Z_1, ..., Z_k)$.

The goal is to construct a learning algorithm with a "privacy guarantee".

Example

We may reveal that smoking correlates to lung cancer, but not that any individual has lung cancer.

Differential Privacy¹

"Nothing about an individual should be learnable from the database that cannot be learned without access to the database." – Dalenius (1977)

¹Dwork, C. (2006). Differential privacy. In 33rd International Colloquium on Automata, Languages and Programming. 1–12.

Differential Privacy¹

"Nothing about an individual should be learnable from the database that cannot be learned without access to the database." - Dalenius (1977)

Definition (Dwork, C. 2006)

A randomized function \mathcal{K} gives ϵ -differential privacy if for all data sets \mathcal{D}_1 and \mathcal{D}_2 differing on at most one element, and all $S \subseteq \operatorname{Range}(\mathcal{K})$,

$$\frac{\Pr[\mathcal{K}(D_1) \in S]}{\Pr[\mathcal{K}(D_1) \in S]} \le \exp(\epsilon).$$

¹Dwork, C. (2006). Differential privacy. In 33rd International Colloquium on Automata, Languages and Programming. 1–12.

Differential Privacy¹

"Nothing about an individual should be learnable from the database that cannot be learned without access to the database." – Dalenius (1977)

Definition (Dwork, C. 2006)

A randomized function \mathcal{K} gives ϵ -differential privacy if for all data sets \mathcal{D}_1 and \mathcal{D}_2 differing on at most one element, and all $S \subseteq \operatorname{Range}(\mathcal{K})$,

$$\frac{\Pr[\mathcal{K}(D_1) \in S]}{\Pr[\mathcal{K}(D_1) \in S]} \le \exp(\epsilon).$$

Differential privacy-preserving mechanism:

- 1. Data perturbation: $(x_1, y_1), \ldots, (x_n, y_n) \Rightarrow (P_1, y_1), \ldots, (P_n, y_n)$.
- 2. Perturbing the solution of learning problem.
- 3. Perturb the optimization problem (Chaudhuri, 2008)
- 4. Exponential mechanism (McSherry and Talwar, 2007)
- 5. etc.

¹Dwork, C. (2006). Differential privacy. In 33rd International Colloquium on Automata, Languages and Programming. 1–12.

Statistical Perspective ²

- ▶ The "query-response" model is considered unrealistic by statisticians.
- Emphasize a role of statistical minimax theory

$$R_n(\mathcal{P}) = \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[\ell(\hat{\theta}, \theta)].$$

- ▶ Density estimation: $X_1, \ldots, X_n \longrightarrow \hat{p} \longrightarrow \hat{p}^* \longrightarrow Z_1, \ldots, Z_k$.
- ▶ Wasserman and Zhou (2010) showed that \hat{p}^* has the same rate of convergence as \hat{p} .
- ► Evaluate "differential privacy" ⇔ "small ball probabilities"

²Wasserman, Larry (2012) "Minimaxity, Statistical Thinking and Differential Privacy," Journal of Privacy and Confidentiality: Vol. 4: Iss. 1, Article 3.

