From Points to Measures

A Kernel Perspective

Krikamol Muandet Bernhard Schölkopf

Max Planck Institute for Intelligent Systems Tübingen, Germany

Learning from Data Points

2 Learning from Dirac Measures

3 Learning from Gaussian Measures

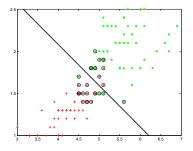
2 Learning from Dirac Measures

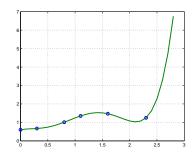
3 Learning from Gaussian Measures

Learning from data points

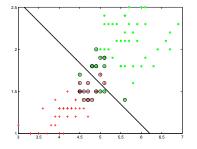
Given finite samples $\{(x_i,y_i)\}_{i=1}^m$ drawn i.i.d. from $\mathcal{X}\times\mathcal{Y}$ according to P(X,Y), the goal is to learn $f:\mathcal{X}\to\mathcal{Y}$ that encodes dependency between X and Y.

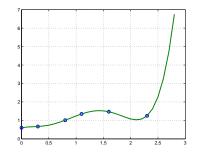
Given finite samples $\{(x_i, y_i)\}_{i=1}^m$ drawn i.i.d. from $\mathcal{X} \times \mathcal{Y}$ according to P(X, Y), the goal is to learn $f : \mathcal{X} \to \mathcal{Y}$ that encodes dependency between X and Y.





Given finite samples $\{(x_i, y_i)\}_{i=1}^m$ drawn i.i.d. from $\mathcal{X} \times \mathcal{Y}$ according to P(X, Y), the goal is to learn $f : \mathcal{X} \to \mathcal{Y}$ that encodes dependency between X and Y.





Unfortunately, the dependency between X and Y is often *nonlinear*.

The kernel method resolves this problem by considering a mapping

$$\phi: \mathcal{X} \to \mathcal{H}, \ x \longmapsto k(x,\cdot)$$

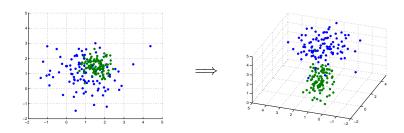
which embeds in some high-dimensional space $\ensuremath{\mathcal{H}}$ the set of data points.

Learning from data points

The kernel method resolves this problem by considering a mapping

$$\phi: \mathcal{X} \to \mathcal{H}, \ x \longmapsto k(x,\cdot)$$

which embeds in some high-dimensional space ${\mathcal H}$ the set of data points.



Learning from data points

Theorem

Following the framework of Tikhonov regularization, any function $f \in \mathcal{H}$ minimizing the regularized risk functional

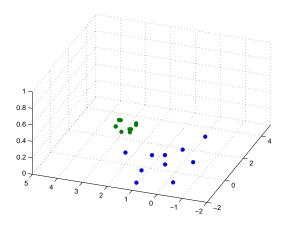
$$\mathcal{L}(\lbrace x_i, y_i, f(x_i)\rbrace_{i=1}^m) + \lambda \Omega(\Vert f \Vert_{\mathcal{H}})$$

admits the representation of the form

$$f = \sum_{i=1}^{m} \alpha_i k(x_i, \cdot)$$

for some $\alpha \in \mathbb{R}^m$ and reproducing kernel k of \mathcal{H} .

Scenario 1 : Learning from Data Points



$$x \longmapsto k(x,\cdot)$$

2 Learning from Dirac Measures

3 Learning from Gaussian Measures

Learning from dirac measures

Consider the Dirac measure δ_x on a measurable space $(\mathcal{X}, \mathcal{A})$, where \mathcal{A} is a σ -algebra of subsets of \mathcal{X} , defined for x in \mathcal{X} by

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

where $A \in \mathcal{A}$.

Learning from Gaussian Measures

Consider the Dirac measure δ_x on a measurable space $(\mathcal{X}, \mathcal{A})$, where \mathcal{A} is a σ -algebra of subsets of \mathcal{X} , defined for x in \mathcal{X} by

$$\delta_{x}(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

where $A \in \mathcal{A}$. For any measurable function f on \mathcal{X} , we have

$$f(x) = \int f(t) \ d\delta_x(t)$$

Learning from dirac measures

Consider the Dirac measure δ_x on a measurable space $(\mathcal{X}, \mathcal{A})$, where A is a σ -algebra of subsets of X, defined for x in X by

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

where $A \in \mathcal{A}$. For any measurable function f on \mathcal{X} , we have

$$f(x) = \int f(t) \ d\delta_x(t)$$

That is, the evaluation of f at point x is the expectation of f with respect to δ_{x} .

If $f \in \mathcal{H}$ of functions on \mathcal{X} with reproducing kernel k, then

$$\langle f, k(x, \cdot) \rangle = \int f(t) \ d\delta_x(t) \ .$$

If $f \in \mathcal{H}$ of functions on \mathcal{X} with reproducing kernel k, then

$$\langle f, k(x, \cdot) \rangle = \int f(t) \ d\delta_x(t) \ .$$

This defines a mapping

$$\phi: \mathcal{P} \to \mathcal{H}, \ \delta_{\mathsf{x}} \longmapsto \mathbb{E}_{\delta_{\mathsf{x}}}[k(\mathsf{x},\cdot)],$$

which embeds in \mathcal{H} the set of Dirac measures on \mathcal{X} . It is trivial to see that this scenario is equivalent to **Scenario 1**.

Learning from dirac measures

If $f \in \mathcal{H}$ of functions on \mathcal{X} with reproducing kernel k, then

$$\langle f, k(x, \cdot) \rangle = \int f(t) \ d\delta_x(t) \ .$$

This defines a mapping

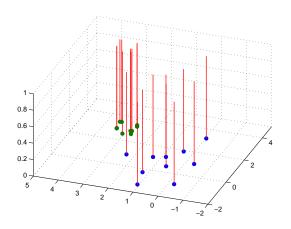
$$\phi: \mathcal{P} \to \mathcal{H}, \ \delta_{\mathsf{x}} \longmapsto \mathbb{E}_{\delta_{\mathsf{x}}}[k(\mathsf{x},\cdot)],$$

which embeds in \mathcal{H} the set of Dirac measures on \mathcal{X} . It is trivial to see that this scenario is equivalent to **Scenario 1**.

This is in fact the motivation to embed the distributions into RKHS (Berlinet and Thomas-agnan, 2004; Smola et al., 2007).

Learning from Gaussian Measures

Scenario 2: Learning from Dirac Measures



$$\delta_x \longmapsto \mathbb{E}_{\delta_x}[k(x,\cdot)]$$

Scenario $1 \equiv$ Scenario 2

Learning from dirac measures

Proposition

Let \mathcal{F} be a set of functions in the reproducing kernel Hilbert space \mathcal{H} having the form $f = \sum_{i=1}^m \alpha_i k(x_i, \cdot)$, where k is the reproducing kernel of \mathcal{H} , and \mathcal{M} be a set of discrete signed measure $\mu = \sum_{i=1}^m \alpha_i \delta_{x_i}$ in \mathcal{H} . Then, for $m \geq 1$, we have

$$\mathcal{F} \equiv \mathcal{M}$$
 .

Learning from dirac measures

Proposition

Let \mathcal{F} be a set of functions in the reproducing kernel Hilbert space \mathcal{H} having the form $f = \sum_{i=1}^m \alpha_i k(x_i, \cdot)$, where k is the reproducing kernel of \mathcal{H} , and \mathcal{M} be a set of discrete signed measure $\mu = \sum_{i=1}^m \alpha_i \delta_{x_i}$ in \mathcal{H} . Then, for $m \geq 1$, we have

$$\mathcal{F} \equiv \mathcal{M}$$
 .

In other words,

$$\sum_{i=1}^{m} \alpha_i k(x_i, \cdot) \equiv \sum_{i=1}^{m} \alpha_i \delta_{x_i}$$

Learning from Gaussian Measures

Learning from dirac measures

Proof.

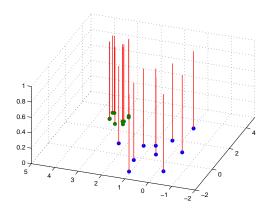
Any Hilbert space \mathcal{H} of functions on \mathcal{X} with reproducing kernel k contains, as a dense subset, the set \mathcal{F} of linear combinations

$$\sum_{i=1}^m \alpha_i k(x_i,\cdot), \quad m \geq 1, \quad \alpha_i \in \mathbb{R}, \quad x_i \in \mathcal{X},$$

with the property that, for any measurable f in \mathcal{H} ,

$$\langle f, \sum_{i=1}^m \alpha_i k(x_i, \cdot) \rangle = \sum_{i=1}^m \alpha_i f(x_i) = \int f \ d\mu$$

where $\mu = \sum_{i=1}^{m} \alpha_i \delta_{x_i}$ is the discrete signed measure putting the mass α_i at the point x_i .

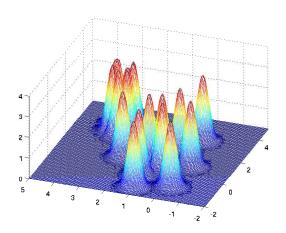


Regularization \equiv Finding the optimal linear combinations of Dirac measures $\{\delta_{x_1}, \delta_{x_2}, ..., \delta_{x_m}\}$

Learning from Data Points

2 Learning from Dirac Measures

3 Learning from Gaussian Measures



$$P\mapsto \mathbb{E}_P[k(x,\cdot)]$$

Let $\mathcal P$ be a set of Gaussian probability measures P_σ with width σ and $\mathcal H_\sigma$ be a RKHS with Gaussian reproducing kernel k_σ . Define a map from $\mathcal P$ into $\mathcal H_\sigma$

$$\phi: \mathcal{P} \to \mathcal{H}_{\sigma}, P_{\sigma} \mapsto \mathbb{E}_{P_{\sigma}}[k_{\sigma}(x,\cdot)] \triangleq \mu[P_{\sigma}]$$

Let \mathcal{P} be a set of Gaussian probability measures P_{σ} with width σ and \mathcal{H}_{σ} be a RKHS with Gaussian reproducing kernel k_{σ} . Define a map from \mathcal{P} into \mathcal{H}_{σ}

$$\phi: \mathcal{P} \to \mathcal{H}_{\sigma}, P_{\sigma} \mapsto \mathbb{E}_{P_{\sigma}}[k_{\sigma}(x,\cdot)] \triangleq \mu[P_{\sigma}]$$

Due to the reproducing property of \mathcal{H}_{σ} , we have

$$\langle f, \mathbb{E}_P[k_\sigma(x,\cdot)] \rangle = \mathbb{E}_P[f(x)]$$

Learning from Gaussian Measures

Let \mathcal{P} be a set of Gaussian probability measures P_{σ} with width σ and \mathcal{H}_{σ} be a RKHS with Gaussian reproducing kernel k_{σ} . Define a map from \mathcal{P} into \mathcal{H}_{σ}

$$\phi: \ \mathcal{P} \to \mathcal{H}_{\sigma}, \ P_{\sigma} \mapsto \mathbb{E}_{P_{\sigma}}[k_{\sigma}(x,\cdot)] \triangleq \mu[P_{\sigma}]$$

Due to the reproducing property of \mathcal{H}_{σ} , we have

$$\langle f, \mathbb{E}_P[k_\sigma(x,\cdot)] \rangle = \mathbb{E}_P[f(x)]$$

Then, define a set of functions

$$\mathcal{F} = \left\{ f \in \mathcal{H}_{\sigma} \middle| f(\cdot) = \sum_{i=1}^{\infty} \beta_{i} \mu[P_{i}], \beta_{i} \in \mathbb{R}, P_{i} \in \mathcal{P}, ||f|| < \infty \right\}$$

Learning from Gaussian Measures

Theorem

Given a training set $\{(x_i, y_i)\}_{i=1}^m$ from $\mathcal{X} \times \mathbb{R}$, a set of Gaussian probability measure $\{P_{\sigma_i}\}_{i=1}^m$ with density $\{p_{\sigma_i}\}_{i=1}^m$, a strictly monotonically increasing real-valued function Ω on $[0,\infty)$, arbitrary loss function $\mathcal{L}: (\mathcal{X} \times \mathbb{R}^2) \to \mathbb{R} \cup \{\infty\}$, and nonnegative regularization parameter λ , then any $f \in \mathcal{F}$ minimizing the regularized risk functional

$$\mathcal{L}\left(\left\{P_{i}, y_{i}, \mathbb{E}_{P_{\sigma_{i}}}[f(x)]\right\}_{i=1}^{m}\right) + \lambda\Omega(\|f\|)$$

admits a representation of the form

$$f(\cdot) = \sum_{i=1}^{m} \alpha_i k_i(x_i, \cdot)$$

where for some $\alpha \in \mathbb{R}^m$ and $k_i = k_{\sigma} \otimes p_{\sigma}$.

Learning from Gaussian Measures

Proof

Consider a bounded linear operator L_{P_i} such that $L_{P_i}f = \mathbb{E}_{P_i}[f(x)]$. Then it follows from Wahba (1990) that each solution f minimizing

$$\mathcal{L}\left(\left\{P_{i}, y_{i}, \mathbb{E}_{P_{\sigma_{i}}}[f(x)]\right\}_{i=1}^{m}\right) + \lambda\Omega(\|f\|)$$

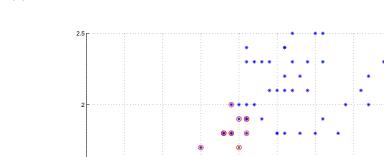
can be written as

$$f = \sum_{i=1}^{m} \alpha_i k_i(\cdot)$$

where each $k_i(\cdot)$ corresponds to each L_{P_i} .

Learning from Data Points

Outline



× ×

3.5

SVM with fixed widths

4.5

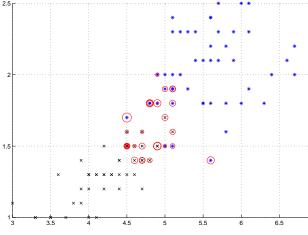
5.5

6.5

0000000000

Application

Outline



SVM with variable widths

Related Works

Outline

• Probability Product Kernel (Jebara et al., 2004)

Learning from Gaussian Measures

0000000000

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.
 - Define kernel $k^*(p, p')$ between probability distributions on \mathcal{X} .

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.
 - Define kernel $k^*(p, p')$ between probability distributions on \mathcal{X} .
 - Define the kernel between examples to equal k^* between the corresponding distributions:

$$k(x,x')=k^*(p,p')$$

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.
 - Define kernel $k^*(p, p')$ between probability distributions on \mathcal{X} .
 - Define the kernel between examples to equal k^* between the corresponding distributions:

$$k(x,x')=k^*(p,p')$$

 Learning using Previleged Information (LUPI) (Pechyony and Vapnik, 2010; Vapnik and Vashist, 2009)

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.
 - Define kernel $k^*(p, p')$ between probability distributions on \mathcal{X} .
 - Define the kernel between examples to equal k^* between the corresponding distributions:

$$k(x,x')=k^*(p,p')$$

- Learning using Previleged Information (LUPI) (Pechyony and Vapnik, 2010; Vapnik and Vashist, 2009)
 - In addition to training data $\{(x_i, y_i)\}_{i=1}^m$, the privileged information $x^* \in \mathcal{X}^*$ is also available.

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.
 - Define kernel $k^*(p, p')$ between probability distributions on \mathcal{X} .
 - Define the kernel between examples to equal k^* between the corresponding distributions:

$$k(x,x')=k^*(p,p')$$

- Learning using Previleged Information (LUPI) (Pechyony and Vapnik, 2010; Vapnik and Vashist, 2009)
 - In addition to training data $\{(x_i, y_i)\}_{i=1}^m$, the privileged information $x^* \in \mathcal{X}^*$ is also available.
 - The privileged information is only available for the training examples.

- Probability Product Kernel (Jebara et al., 2004)
 - Fitting probabilistic models $p_1(x), ..., p_m(x)$ to $x_1, ..., x_m$.
 - Define kernel $k^*(p, p')$ between probability distributions on \mathcal{X} .
 - Define the kernel between examples to equal k^* between the corresponding distributions:

$$k(x,x')=k^*(p,p')$$

- Learning using Previleged Information (LUPI) (Pechyony and Vapnik, 2010; Vapnik and Vashist, 2009)
 - In addition to training data $\{(x_i, y_i)\}_{i=1}^m$, the privileged information $x^* \in \mathcal{X}^*$ is also available.
 - The privileged information is only available for the training examples.
- Gaussian Processes

Summary

- Learning from Data Points
- 2 Learning from Dirac Measures
- 3 Learning from Gaussian Measures

Learning from Gaussian Measures

000000000

Acknowledgement

Outline

- Christian Walder
- Samory Kpotufe
- Francesco Dinuzzo

References

Berlinet, A. and C. Thomas-agnan (2004). Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers.

Jebara, Tony et al. (2004). "Probability product kernels". In: Journal of Machine Learning Research 5, pp. 819–844.

Pechyony, Dmitry and Vladimir Vapnik (2010). "On the Theory of Learning with Privileged Information". In: Advances in Neural Information Processing Systems 23.

Smola, Alex et al. (2007). "A Hilbert space embedding for distributions". In: In Algorithmic Learning Theory: 18th International Conference. Springer-Verlag, pp. 13-31.

Vapnik, Vladimir and Akshay Vashist (2009). "A new learning paradigm: Learning using privileged information". In: Neural Networks 22.5-6. pp. 544-557.

Wahba, G. (1990). Spline models for Observational data (CBMS-NSF Regional Conference Series in Applied Mathematics). Philadelphia: Society for Industrial and Applied Mathematics, p. 180.

Questions & Comments?

Learning from Data Points

