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Learning from data points

Given finite samples {(xi , yi )}
m

i=1 drawn i.i.d. from X × Y
according to P(X ,Y ), the goal is to learn f : X → Y that encodes
dependency between X and Y .
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Unfortunately, the dependency between X and Y is often nonlinear.
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Learning from data points

The kernel method resolves this problem by considering a mapping

φ : X → H, x 7−→ k(x , ·) ,

which embeds in some high-dimensional space H the set of data
points.
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Learning from data points

Theorem

Following the framework of Tikhonov regularization, any function
f ∈ H minimizing the regularized risk functional

L({xi , yi , f (xi )}
m

i=1) + λΩ(‖f ‖H)

admits the representation of the form

f =

m
∑

i=1

αik(xi , ·)

for some α ∈ R
m and reproducing kernel k of H.
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Scenario 1 : Learning from Data Points
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x 7−→ k(x , ·)
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Learning from dirac measures

Consider the Dirac measure δx on a measurable space (X ,A),
where A is a σ-algebra of subsets of X , defined for x in X by

δx(A) =

{

1 if x ∈ A

0 if x /∈ A

where A ∈ A.
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Consider the Dirac measure δx on a measurable space (X ,A),
where A is a σ-algebra of subsets of X , defined for x in X by

δx(A) =

{

1 if x ∈ A

0 if x /∈ A

where A ∈ A. For any measurable function f on X , we have

f (x) =

∫

f (t) dδx(t)

That is, the evaluation of f at point x is the expectation of f with
respect to δx .
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Learning from dirac measures

If f ∈ H of functions on X with reproducing kernel k , then

〈f , k(x , ·)〉 =

∫

f (t) dδx(t) .
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Learning from dirac measures

If f ∈ H of functions on X with reproducing kernel k , then

〈f , k(x , ·)〉 =

∫

f (t) dδx(t) .

This defines a mapping

φ : P → H, δx 7−→ Eδx [k(x , ·)] ,

which embeds in H the set of Dirac measures on X . It is trivial to
see that this scenario is equivalent to Scenario 1.
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Learning from dirac measures

If f ∈ H of functions on X with reproducing kernel k , then

〈f , k(x , ·)〉 =

∫

f (t) dδx(t) .

This defines a mapping

φ : P → H, δx 7−→ Eδx [k(x , ·)] ,

which embeds in H the set of Dirac measures on X . It is trivial to
see that this scenario is equivalent to Scenario 1.

This is in fact the motivation to embed the distributions into
RKHS (Berlinet and Thomas-agnan, 2004; Smola et al., 2007).

10 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

Scenario 2 : Learning from Dirac Measures
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δx 7−→ Eδx [k(x , ·)]

Scenario 1 ≡ Scenario 2
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Learning from dirac measures

Proposition

Let F be a set of functions in the reproducing kernel Hilbert space
H having the form f =

∑

m

i=1 αik(xi , ·), where k is the reproducing
kernel of H, and M be a set of discrete signed measure
µ =

∑

m

i=1 αiδxi in H. Then, for m ≥ 1, we have

F ≡ M .
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i=1 αik(xi , ·), where k is the reproducing
kernel of H, and M be a set of discrete signed measure
µ =

∑

m

i=1 αiδxi in H. Then, for m ≥ 1, we have

F ≡ M .

In other words,
m
∑

i=1

αik(xi , ·) ≡
m
∑

i=1

αiδxi
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Learning from dirac measures

Proof.

Any Hilbert space H of functions on X with reproducing kernel k
contains, as a dense subset, the set F of linear combinations

m
∑

i=1

αik(xi , ·), m ≥ 1, αi ∈ R, xi ∈ X ,

with the property that, for any measurable f in H,

〈f ,

m
∑

i=1

αik(xi , ·)〉 =

m
∑

i=1

αi f (xi ) =

∫

f dµ

where µ =
∑

m

i=1 αiδxi is the discrete signed measure putting the
mass αi at the point xi .
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Scenario 2 : Learning from Dirac Measures
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Regularization ≡ Finding the optimal linear combinations of Dirac
measures {δx1 , δx2 , ..., δxm}

14 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

1 Learning from Data Points

2 Learning from Dirac Measures

3 Learning from Gaussian Measures

15 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

Scenario 3 : Learning from Gaussian Measures

P 7→ EP [k(x , ·)]
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Learning from Gaussian Measures

Let P be a set of Gaussian probability measures Pσ with width σ
and Hσ be a RKHS with Gaussian reproducing kernel kσ . Define a
map from P into Hσ

φ : P → Hσ, Pσ 7→ EPσ
[kσ(x , ·)] , µ[Pσ]
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Let P be a set of Gaussian probability measures Pσ with width σ
and Hσ be a RKHS with Gaussian reproducing kernel kσ . Define a
map from P into Hσ

φ : P → Hσ, Pσ 7→ EPσ
[kσ(x , ·)] , µ[Pσ]

Due to the reproducing property of Hσ, we have

〈f ,EP [kσ(x , ·)]〉 = EP [f (x)]

Then, define a set of functions

F =

{

f ∈ Hσ

∣

∣

∣
f (·) =

∞
∑

i=1

βiµ[Pi ], βi ∈ R,Pi ∈ P, ‖f ‖ < ∞

}
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Learning from Gaussian Measures

Theorem

Given a training set {(xi , yi)}
m

i=1 from X × R, a set of Gaussian
probability measure {Pσi

}m
i=1 with density {pσi

}m
i=1, a strictly

monotonically increasing real-valued function Ω on [0,∞), arbitrary loss
function L : (X × R

2) → R ∪ {∞}, and nonnegative regularization
parameter λ, then any f ∈ F minimizing the regularized risk functional

L
(

{Pi , yi ,EPσi
[f (x)]}m

i=1

)

+ λΩ(‖f ‖)

admits a representation of the form

f (·) =

m
∑

i=1

αiki(xi , ·)

where for some α ∈ R
m and ki = kσ ⊗ pσi

.
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Learning from Gaussian Measures

Proof.

Consider a bounded linear operator LPi
such that

LPi
f = EPi

[f (x)]. Then it follows from Wahba (1990) that each
solution f minimizing

L
(

{Pi , yi ,EPσ
i
[f (x)]}mi=1

)

+ λΩ(‖f ‖)

can be written as

f =

m
∑

i=1

αiki (·)

where each ki (·) corresponds to each LPi
.
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Application
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Gaussian Processes

22 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

Summary

1 Learning from Data Points

2 Learning from Dirac Measures

3 Learning from Gaussian Measures

23 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

Acknowledgement

Christian Walder

Samory Kpotufe

Francesco Dinuzzo

24 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

References

Berlinet, A. and C. Thomas-agnan (2004). Reproducing Kernel Hilbert
Spaces in Probability and Statistics. Kluwer Academic Publishers.

Jebara, Tony et al. (2004). “Probability product kernels”. In: Journal of
Machine Learning Research 5, pp. 819–844.

Pechyony, Dmitry and Vladimir Vapnik (2010). “On the Theory of
Learning with Privileged Information”. In: Advances in Neural
Information Processing Systems 23.

Smola, Alex et al. (2007). “A Hilbert space embedding for distributions”.
In: In Algorithmic Learning Theory: 18th International Conference.
Springer-Verlag, pp. 13–31.

Vapnik, Vladimir and Akshay Vashist (2009). “A new learning paradigm:
Learning using privileged information”. In: Neural Networks 22.5-6,
pp. 544–557.

Wahba, G. (1990). Spline models for Observational data (CBMS-NSF
Regional Conference Series in Applied Mathematics). Philadelphia:
Society for Industrial and Applied Mathematics, p. 180.

25 / 26



Outline Learning from Data Points Learning from Dirac Measures Learning from Gaussian Measures References

Questions & Comments?

26 / 26


	Outline
	Learning from Data Points
	

	Learning from Dirac Measures
	

	Learning from Gaussian Measures
	

	References

