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Potential Applications:

» Uncertain/noisy data (astronomical/biological data)

» Groups of samples (group anomaly, preference learning)
Changing environments (domain adaptation/generalization)
Large-scale machine learning (data squashing)
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Regularization on Probability Measures T

Given a sample (P1,y1), (P2,Y2), .., (Pm,Ym), any solution f to

E(Pbyl?E]P’l[f]? oo c 7Pm7ym7EPm[f]) + (Hf”H) (1)

admits aform f = > | ;Ep, [K(X, )] for some a; € R,i=1,...,m.

Our framework (1) is different from
1. Ep,Ep, ... Ep, ({xi,yi, f(xi)} 1) + Q(|If]|%) intracable
2. 0({Mi,yi, F(Mi) ) + Q(||F|l2), Mi = Ep,[x]  information loss

Risk Deviation Bound
Given a distribution P with variance o2, a Lipschitz continuous function f
with constant Cs, a loss function ¢ with constant Cy, it follows for any y € R
that

[Exple(y. F())] — 0, Explf ()])| < 2C,Cio

‘ Information preserving + computationally efficient.




Level-2 kernel
K
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Support Measure Machines (SMM)
Embedding kernel
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Feature maps

K(dx’dy)
= (k(X, ')? k(yv )>’H
= k(x,y)

The SVM is recovered
as a special case.

Linear kernels

K(P,Q)
= (up, LQ)H
= EXNP,ZNQ[k (X’ Z)]

It defines the feature for
distributions.
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Nonlinear kernels

K(P,Q)
= r(up, pQ)
= (Y(up), ¥(pQ))F

It allows for nonlinear
learning algorithms.




Flexible Support Vector Machines Th54 |

K(P,Q) = </k g(x,X)dx, /k(z o(z, z)dz>H_kg(x z) J

Standard Support Vector Machine Flexible Support Vector Machine

f=3k(x,) f=> ki(xi, )

\ The flexible SVM places different kernels on training sample S.




