
LEARNING FROM DISTRIBUTIONS

VIA SUPPORT MEASURE MACHINES
K. Muandet , K. Fukumizu, F. Dinuzzo, B. Sch ölkopf
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Potential Applications:
I Uncertain/noisy data (astronomical/biological data)
I Groups of samples (group anomaly, preference learning)
I Changing environments (domain adaptation/generalization)
I Large-scale machine learning (data squashing)
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Regularization on Probability Measures Th54

Given a sample (P1; y1); (P2; y2); : : : ; (Pm; ym), any solution f to

` (P1; y1; EP1[f ]; : : : ;Pm; ym; EPm[f ]) + 
 ( kf kH ) (1)

admits a form f =
P m

i= 1 � iEPi [k(x; �)] for some � i 2 R; i = 1; : : : ; m.

Our framework (1) is different from
1. EP1EP2 : : : EPm`(f xi ; yi ; f (xi )gm

i= 1) + 
( kf kH ) intracable
2. `(f Mi ; yi ; f (Mi )gm

i= 1) + 
( kf kH ), Mi = EPi [x] information loss

Risk Deviation Bound
Given a distribution P with variance � 2, a Lipschitz continuous function f
with constant Cf , a loss function ` with constant C` , it follows for any y 2 R
that

jEx� P[`(y; f (x))] � `(y; Ex� P[f (x)]) j � 2C`Cf �

Information preserving + computationally ef�cient.
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Support Measure Machines (SMM) Th54
Embedding kernel Level-2 kernel

 (� P)

k

F

�

H

� P = EP[k(x; �)]

Feature maps

K (� x ; � y )

= hk(x; �); k(y; �)i H

= k(x; y)

The SVM is recovered

as a special case.

Linear kernels

K (P; Q)

= h� P; � Qi H

= Ex� P;z� Q[k(x; z)]

It de�nes the feature for

distributions.

Nonlinear kernels

K (P; Q)

= � (� P; � Q)

= h (� P);  (� Q)i F

It allows for nonlinear

learning algorithms.
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Flexible Support Vector Machines Th54

K (P; Q) =
� Z

k(~x; �)g(x; ~x)d ~x;
Z

k(~z; �)g(z; ~z)d~z
�

H
= kg(x; z)

Standard Support Vector Machine Flexible Support Vector Machine

f =
P n

i= 1 k(xi ; �) f =
P n

i= 1 ki (xi ; �)

The �exible SVM places different kernels on training sample s.
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