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1 Domain Generalization and Related Frameworks

The most fundamental assumption in machine learning is that the observations are independent
and identically distributed (i.i.d.). That is, each observation comes from the same probability
distribution as the others and all are mutually independent. However, this assumption is often
violated in practice, in which case the standard machine learning algorithms do not perform well. In
the past decades, many techniques have been proposed to tackle scenarios where there is a mismatch
between training and test distributions. These include domain adaptation [Bickel et al., 2009],
multitask learning [Caruana, 1997], transfer learning [Pan and Yang, 2010], covariate/dataset shift
[Quionero-Candela et al., 2009] and concept drift [Widmer and Kurat, 1996]. To better understand
domain generalization, we briefly discuss how it relates to some of these approaches.

Transfer learning (see e.g., Pan and Yang [2010] and references therein). Transfer learn-
ing aims at transferring knowledge from some previous tasks to a target task when the latter has
limited training data. That is, although there may be few labeled examples, “knowledge” obtained
in related tasks may be available. Transfer learning focuses on improving the learning of the target
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Table 1: Comparison of domain generalization with other well-known frameworks. Note that
the domain generalization is closely related to multi-task learning and domain adaptation. The
difference of domain generalization is that one does not observe the target domains in which a
classifier will be applied without retraining the classifier.
Framework Distribution Mismatch Multiple Sources Target Domain
Standard Setup ✗ ✗ ✗
Transfer Learning ✓ ✗ ✓
Multi-task Learning ✓ ✓ ✗
Domain Adaptation ✓ ✓ ✓
Domain Generalization ✓ ✓ ✗

predictive function using the knowledge in the source task. Although not identical, domain gen-
eralization can be viewed as a transfer learning when knowledge of the target task is unavailable
during training.

Multitask learning (see e.g., Caruana [1997] and references therein). The goal of multi-
task learning is to learn multiple tasks simultaneously – especially when training examples in each
task are scarce. By learning all tasks simultaneously, one expects to improve generalization on
individual tasks. An important assumption is therefore that all the tasks are related. Multitask
learning differs from domain generalization because learning the new task often requires retraining.

Domain adaptation (see e.g., Bickel et al. [2009] and references therein). Domain adap-
tation, also known as covariate shift, deals primarily with a mismatch between training and test
distributions. Domain generalization deals with a broader setting where training instances may
have been collected from multiple source domains. A second difference is that in domain adapta-
tion one observes the target domain during the training time whereas in domain generalization one
does not.

Table 1 summarizes the main differences between the various frameworks.

2 Proof of Theorem 1

Lemma 6. Given a set of distributions P = {P1,P2 . . . ,PN}, the distributional variance of P is

VH(P) = 1
N

∑N

i=1‖µPi − µP̄‖
2
H where µP̄ = (1/N)

∑N

i=1 µPi and P̄ = 1
N

∑N

i=1 P
i.

Proof. Let P̄ be the probability distribution defined as (1/N)
∑N

i=1 P
i, i.e., P̄(x) = (1/N)

∑N

i=1 P
i(x).

It follows from the linearity of the expectation that µP̄ = (1/N)
∑N

i=1 µPi . For brevity, we will de-
note 〈·, ·〉H by 〈·, ·〉. Then, expanding (3) gives

VH(P) =
1

N
tr(Σ) =

1

N
tr(G)−

1

N2

N∑

i,j=1

Gij

=
1

N

N∑

i=1

〈µPi , µPi〉 −
1

N2

N∑

i,j=1

〈µPi , µPj 〉
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=
1

N




N∑

i=1

〈µPi , µPi〉 −
2

N

N∑

i,j=1

〈µPi , µPj 〉+
1

N

N∑

i,j=1

〈µPi , µPj 〉




=
1

N




N∑

i=1

〈µPi , µPi〉 − 2
N∑

i=1

〈
µPi ,

1

N

N∑

j=1

µPj

〉
+N

〈
1

N

N∑

i=1

µPi ,
1

N

N∑

j=1

µPj

〉


=
1

N

[
N∑

i=1

〈µPi , µPi〉 − 2

N∑

i=1

〈µPi , µP̄〉+N〈µP̄, µP̄〉

]

=
1

N

N∑

i=1

(
〈µPi , µPi〉 − 2 · 〈µPi , µP̄〉+ 〈µP̄, µP̄〉

)

=
1

N

N∑

i=1

‖µPi − µP̄‖
2
H ,

which completes the proof. �

Theorem 1 For a characteristic kernel k, VH(P) = 0 if and only if P1 = P2 = · · · = PN .

Proof. Since k is characteristic, ‖µP − µQ‖
2
H is a metric and is zero iff P = Q for any distributions

P and Q [Sriperumbudur et al., 2010]. By Lemma 6, VH(P) = 1
N

∑N

i=1‖µPi − µP̄‖
2
H. Thus, ‖µPi −

µP̄‖
2
H = 0 iff Pi = P̄. Consequently, if VH(P) is zero, this implies that Pi = P̄ for all i, meaning

that P1 = · · · = Pℓ. Conversely, if P1 = · · · = Pℓ, then ‖µPi − µP̄‖
2
H = 0 is zero for all i and thereby

VH(P) = 1
N

∑N

i=1‖µPi − µP̄‖
2
H is zero. �

3 Proof of Theorem 2

Theorem 2 The empirical estimator V̂H(S) = 1
N
tr(Σ̂) = tr(KQ) obtained from Gram matrix

Ĝij :=
1

ni · nj

ni∑

k=1

nj∑

l=1

k(x
(i)
k , x

(j)
l )

is a consistent estimator of VH(P).

Proof. Recall that

VH(P) =
1

N
tr(G)−

1

N2

N∑

i,j=1

Gij and V̂H(S) =
1

N
tr(Ĝ)−

1

N2

N∑

i,j=1

Ĝij

where

Gij = 〈µPi , µPj 〉H =

∫∫
k(x, z) dPi(x) dPj(z)

Ĝij = 〈µ̂Pi , µ̂Pj 〉H =
1

ninj

ni∑

k=1

nj∑

l=1

k(x
(i)
k , x

(j)
l )
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By Theorem 15 in Altun and Smola [2006], we have a fast convergence of µ̂P to µP. Consequently,

we have Ĝ → G, which implies that V̂H(S) → VH(P). Hence, V̂H(S) is a consistent estimator of
VH(P). �

4 Derivation of Eq. (8)

DICA employs the covariance of inverse regressor V(E[φ(X)|Y ]), which can be written in terms of
covariance operators. Let H and F be the RKHSes of X and Y endowed with reproducing kernels
k and l, respectively. Let Σxx, Σyy, Σxy, and Σyx be the covariance operators in and between the
corresponding RKHSes of X and Y . We define the conditional covariance operator of X given Y ,
denoted by Σxx|y, as

Σxx|y , Σxx − ΣxyΣ
−1
yy Σyx . (1)

The following theorem from Fukumizu et al. [2004] states that, under mild conditions, Σxx|y

equals the expected conditional variance of φ(X) given Y .

Theorem 7. For any f ∈ H, if there exists g ∈ F such that E[f(X)|Y ] = g(Y ) for almost every
Y , then Σxx|y = E[V(φ(X)|Y )].

Using the E-V -V -E identity1, the covariance V(E[φ(X)|Y ]) can be expressed in terms of the
conditional covariance operators as follow:

V(E[φ(X)|Y ]) = V(φ(X))− E[V(φ(X)|Y )], (2)

assuming that the inverse regressor E[f(x)|y] is a smooth function of y for any f ∈ H.
By virtue of Theorem 7, the second term in the r.h.s. of (2) is Σxx|y. Since V(φ(X)) =

Cov(φ(x), φ(x)) = Σxx, it follows from (1) that the covariance of the inverse regression V(E[φ(X)]|Y )
can be expressed as

V(E[φ(X)|Y ]) = ΣxyΣ
−1
yy Σyx . (3)

The covariance (3) can be estimated from finite samples (x1, y1), . . . , (xn, yn) by V̂(E[φ(X)|Y ]) =

Σ̂xyΣ̂
−1
yy Σ̂yx where Σ̂xy = 1

n
ΦxΦ

⊤
y and Φx = [φ(x1), . . . , φ(xn)] and Φy = [ϕ(y1), . . . , ϕ(yn)]. Let

K and L denote the kernel matrices computed over samples {x1, x2, . . . , xn} and {y1, y2, . . . , yn},
respectively. We have

V̂(E[φ(X)|Y ]) =

(
1

n
ΦxΦ

⊤
y

)(
1

n
(ΦyΦ

⊤
y + nεI)

)−1 (
1

n
ΦyΦ

⊤
x

)

=
1

n
ΦxΦ

⊤
y Φy

(
Φ⊤

y Φy + nεIn
)−1

Φ⊤
x

=
1

n
ΦxL (L+ nεIn)

−1
Φ⊤

x (4)

where L = Φ⊤
y Φy and I is the identity operator. The second equation is obtained by applying the

fact that (ΦyΦ
⊤
y + nεI)Φy = Φy(Φ

⊤
y Φy + nεIn).

1V(X) = E[V(X|Y )] + V(E[X|Y ]) for any X,Y .
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Finally, using Σ̂xx = 1
n
ΦxΦ

⊤
x and recalling that K = Φ⊤

x Φx, we obtain

b⊤
k Σ̂

−1
xx V̂(E[X|Y ])Σ̂xxbk = b⊤

k

(
1

n
ΦxΦ

⊤
x

)−1 (
1

n
ΦxL (L+ nεIn)

−1
Φ⊤

x

)(
1

n
ΦxΦ

⊤
x

)
bk

=
1

n
β⊤
k Φ

⊤
x

(
ΦxΦ

⊤
x

)−1
ΦxL (L+ nεIn)

−1
Φ⊤

x

(
ΦxΦ

⊤
x

)
Φxβk

=
1

n
β⊤
k Φ

⊤
x Φx

(
Φ⊤

x Φx

)−1
L (L+ nεIn)

−1
Φ⊤

x

(
ΦxΦ

⊤
x

)
Φxβk

=
1

n
β⊤
k L(L+ nεI)−1K2βk

and
b⊤
k bk = β⊤

k Φ
⊤
x Φxβk = β⊤

k Kβk

as desired.

5 Derivation of Lagrangian (10)

Observe that optimization

max
B∈Rn×m

tr
(
B⊤XB

)

tr (B⊤Y B)
(5)

is invariant to rescaling B 7→ α ·B. Optimization (5) is therefore equivalent to

max
B∈Rn×m

tr
(
B⊤XB

)

subject to: tr
(
B⊤Y B

)
= 1,

which yields Lagrangian
L = tr

(
B⊤XB

)
− tr

((
B⊤Y B − I

)
Γ
)
. (6)

6 Proof of Theorem 5

We consider a scenario where distributions Pi are drawn according to P∗ with probability µi.
Introduce shorthand X̃ij for (P(i), Xij) for a distribution on PX and a corresponding random
variable on X .

The quantity of interest is the difference between the expected and empirical loss of a classifier
f : PX ×X → Y under loss function ℓ : Y × Y → R+.

Assumptions. The loss function ℓ : R × Y → R+ is φℓ-Lipschitz in its first variable and
bounded by Uℓ. The kernel kX is bounded by UX . Assume that all distributions in P∗ are mapped
into a ball of size UP by ΨP. Finally, since kP is a is a square exponential, there is a constant LP

such that
‖ΦP(v)− ΦP(w)‖ ≤ LP‖v − w‖ for all v, w.

Recall that N is the number of sampled domains, ni is the number of samples in domain i, and
n =

∑N

i=1 ni is the total number of samples. The proof assumes ni = nj for all i, j.
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Theorem 5. Assumes the conditions above hold. Then with probability at least 1− δ

sup
‖f‖H≤1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ c1
1

N
tr(B⊺KLKB) + tr(B⊤KB)

(
c2

N · (log δ−1 + 2 logN)

n
+ c3

log δ−1

N
+

c4
N

)
.

Remark 1. Recall that Φx = [φ(x1), . . . , φ(xn)]. The composition xt 7→ kt · B, where kt =
[k(x1, xt), . . . , k(xn, xt)], can therefore be rewritten as φ(xt) · B = φ(xt) · Φx ·B.

Proof. The proof modifies the approach taken in Blanchard et al. [2011] to handle the preprocessing
via transform B, and the fact that we work with squared errors. Parts of the proof that pass through
largely unchanged are omitted.

We repeatedly apply the inequality |a + b|2 ≤ 2|a|2 + 2|b|2. However, we only incur the
multiplication-by-2 penalty once since |a1 + · · ·+ an|

2 ≤ 2|a1|
2 + · · ·+ 2|an|

2.
Decompose

sup
‖f‖H≤1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− E

P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− EPiℓ(f(X̃ijB), Yi)

∣∣∣
2

+ sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣EPiℓ(f(X̃ijB), Yi)− E
P̂iℓ(f(X̃ijB), Yi)

∣∣∣
2

+ sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣EP̂iℓ(f(X̃ijB), Yi)− E
P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

= (A) + (B) + (C) .

Control of (C):

(C) = sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣EP̂iℓ(f(X̃ijB), Yi)− E
P̂
ℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ φ2
ℓ sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣EP̂if(X̃ijB)− E
P̂
f(X̃ijB)

∣∣∣
2

= φ2
ℓ ·

2

N

N∑

i=1

∥∥∥ΨP(P̂i)⊗ µ
P̂iB −ΨP(P̂)⊗ µ

P̂
B
∥∥∥
2

Note that ‖ΨP(µ(P))‖2 ≤ LP · ‖µP‖
2 ≤ LPUP. Therefore,

(C) ≤ φ2
ℓLPUP

2

N

N∑

i=1

∥∥µ
P̂iB − µ

P̂
B
∥∥2 .
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By the proof of Theorem 1 and since Φ⊤
x B = KB, we have

(C) ≤ 2φ2
ℓLPUP

1

N
tr(KBB⊺KL).

Control of (B): Similarly,

(B) = sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣EPiℓ(f(X̃ijB), Yi)− E
P̂iℓ(f(X̃ijB), Yi)

∣∣∣
2

≤ 2φ2
ℓLPUP ·

1

N

N∑

i=1

∥∥µPiB − µ
P̂iB

∥∥2

≤ 2φ2
ℓLPUP · ‖B‖2HS ·

1

N

N∑

i=1

∥∥µPi − µ
P̂i

∥∥2

Here we follow the strategy applied by Blanchard et al. [2011] to control their term (I) in The-

orem 5.1. Assume ni = nj for all i, j and recall n =
∑N

i=1 ni so ni = n/N for all i.
By Hoeffding’s inequality in Hilbert space, with probability greater than 1 − δ the following

inequality holds ∥∥∥∥∥∥
1

ni

ni∑

j=1

µ(X̂ij)− EP(i)µ(Xij)

∥∥∥∥∥∥

2

≤ 9UX
N · log 2δ−1

n
.

Applying the union bound obtains

(Ib) ≤ 18φ2
ℓLPUPUX · ‖B‖2HS ·

N · (log δ−1 + 2 logN)

n
.

Control of (A):

(A) = sup
‖f‖H≤1

2

N

N∑

i=1

∣∣∣E∗
PEPℓ(f(X̃ijB), Yi)− EPiℓ(f(X̃ijB), Yi)

∣∣∣
2

Following the strategy used by Blanchard et al. [2011] to control (II) in Theorem 5.1, we obtain

(A) ≤ c3
φ2
ℓU

2
XUP + Uℓ log δ

−1

N
· ‖B‖2HS .

End of proof: We have that K is invertible since Σ̂xx is assumed to be invertible. It follows
that the trace tr(B⊤KB) defines a norm which coincides with the Hilbert-Schmidt norm ‖B‖2HS .
Combining the three inequalities above concludes the proof. �

7 Leave-one-out accuracy

Figure 1 depicts the leave-one-out accuracies of different approaches evaluated on each subject in
the dataset. Average leave-one-out accuracies are reported in Table 2. The distributional SVM
outperforms the pooling SVM in this setting, possibly because of the relatively large number of
training subjects, i.e., 29 subjects. Using the invariant features learnt by DICA also gives higher
accuracies than other approaches.
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Figure 1: The leave-one-out accuracy of different methods evaluated on each subject in the GvHD
dataset. The top figure depicts the pooling setting, whereas the bottom figure depicts the distribu-
tional setting.
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