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Abstract. There has recently been a large effort in using unlabeled data
in conjunction with labeled data in machine learning. Semi-supervised
learning and active learning are two well-known techniques that exploit
the unlabeled data in the learning process. In this work, the active learn-
ing is used to query a label for an unlabeled data on top of a semi-
supervised classifier. This work focuses on the query selection criterion.
The proposed criterion selects the example for which the label change
results in the largest pertubation of other examples’ label. Experimental
results show the effectiveness of the proposed query selection criterion in
comparison to existing techniques.
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1 Introduction

There has recently been a large effort in using unlabeled data in conjunction
with labeled data in machine learning. Indeed, in supervised learning, a huge
amount of labeled data, e.g., manual annotation of legitimate and spam emails,
is needed to train an accurate classifier. Labeled examples are however expensive
and difficult to obtain since they require experienced annotators. Unlabeled in-
stances, on the other hand, are easy to collect. Although they are usually useless
in traditional supervised learning, unlabeled data may contain relevant infor-
mation that can produce considerable improvement in learning accuracy. This
is why several works [1–4] focus on how to exploit both labeled and unlabeled
data to train the classifier. Semi-supervised learning and active learning are two
well-known settings that have been considered to incorporate both kinds of data
in learning process.

Semi-supervised learning has drawn large attention in the past decade due
to its significance in many real-world problems. With few labeled examples, the



goal of this learning method is then to create as accurate as or even better clas-
sifier than what we would obtain from traditional supervised learning. Many
successful techniques for semi-supervised learning have been proposed in various
frameworks, e.g., generative models [5, 6], Gaussian processes [2, 7, 8], and infor-
mation regularizations [9, 10]. Amongst these tecniques, semi-supervised learn-
ing on graph has received the most attention, as shown by the number of works
on this subject including graph mincut [11, 12], learning with local and global
consistency [13], and manifold regularizations [14, 15], for example. Interested
readers should consult [16] for an extensive literature review of semi-supervised
learning.

The goal of active learning coincides with that of semi-supervised learning,
which aims at reducing the use of labeled data. The interesting aspect of active
learning is that the learning system actively queries the instance whose label will
be assigned by human annotators. As a result, the number of labeled examples
required is usually less than what would actually be when learned using normal
supervised learning. Active learning has been studied for many real-world prob-
lems such as text classification [17, 18]. Further information on active learning
can be obtained from [19].

In this work, we propose the novel algorithm based on the combination of
active learning and semi-supervised classification. More precisely, the system
actively queries an instance from a pool of unlabeled instances. The human an-
notator will give the true label of this example. Then labeled examples along
with the rest of unlabeled instances are used in standard semi-supervised classi-
fication. Due to its capability of evaluating the model successively, this learning
framework becomes more effective than traditional semi-supervised learning pro-
cesses. In this work we introduce a novel evaluative measure called weighted en-

tropy that is used as a criterion for active query selection on top of graph-based
semi-supervised classification.

This paper is organized as follows. Section 2 briefly reviews the related works.
Next, we discuss the problem of graph-based semi-supervised learning in Sec. 3.
The query selection algorithm based on the weighted entropy is then presented
in Sec. 4. Experimental results are shown in Sec. 5, followed by conclusions in
Sec. 6.

2 Related Works

All active learning techniques focus on how to find the optimal query, which
generally involves evaluating the informativeness of unlabeled examples. There
have been many proposed querying strategies that work well in practice. Ran-
dom sampling [20] is the simplest querying strategy. This strategy is often used
for preliminary testing of learning algorithms in active learning since it is very
easy to implement. However, random method is not very effective in practice.
For example, if the dataset contains much less number of positive examples than
negative examples, then it is likely that a random sampling will select less posi-
tive examples than negative examples. As a result, Lewis and Gale [17] proposed



a querying framework called uncertainty sampling. In this framework, the algo-
rithm asks an annotator to label those examples whose class membership is the
most uncertain. This strategy significantly reduces the amount of training data
that would have to be manually labeled to achieve a desired level of accuracy.
However, uncertainty sampling is prone to query outliers, which may not be
“representative” of other examples in the distribution [21, 22].

Due to this problem, the estimated error reduction framework has been pro-
posed. It prefers the queries that minimize the expected future error of the
learning system. Roy and McCallum applied this framework in text classifica-
tion using Naive Bayes [21]. Zhu et al. [22] combined it with a semi-supervised
classification. Both techniques result in an improvement over both random and
uncertainty sampling. However, the estimated error reduction may be the most
expensive query selection framework for many model classes since it requires es-
timating the expected future error over the set of unlabeled data for each query.
This usually means that a new model must be incrementally trained for each
possible query, leading to an increase in computational cost for some models,
such as a logistic regression models and neural networks. Fortunately, this is not
the case for graph-based semi-supervised classification with Gaussian random
field models [22] for which the incremental training technique is exact and ef-
ficient. Therefore, combining active learning with semi-supervised classification
guarantees that this approach will be fairly practical.

3 Graph-Based Semi-supervised Classification

Graph-based semi-supervised classification methods utilize a weighted graph
whose nodes represent labeled and unlabeled data points. The weighted edges
reflect the similarities between nodes. Most existing algorithms are based on the
assumption that the labeling is smooth on the graph, i.e., similar data points
tend to have similar labels. This is called the smoothness assumption [3].

Let X = {x1, . . . , xl, xl+1, . . . , xn} ⊂ R
m be a set of n data points. The first l

data points are labeled as y = [y1, y2, . . . , yl]
T with yi ∈ Y = {0, 1}. The rest of

u = n− l data points are initially unlabeled. Let L and U denote sets of labeled
and unlabeled examples, respectively. The goal of semi-supervised learning is to
utilize labeled data together with unlabeled data to construct a classifier.

The graph is represented by a matrix W = [wij ]n×n. The non-negative edge
weight wij between node i, j is computed as

wij = exp(−
m

∑

d=1

(xi,d − xj,d)
2/σ2

d) , (1)

where xi,d is the d-th component of xi and σd is the bandwidth hyperparameters
for the dimension d.

In general, graph-based semi-supervised classification technique searches for
a real-valued function f on graph and then assigns labels based on f . Given the
weight matrix W and the real-valued function f , the inconsistency on graph can
be define according to the smoothness assumption as



E(f) =

n
∑

i,j=1

wij(f(i) − f(j))2 , (2)

where f(i) and f(j) are the function values evaluated on node i and j, re-
spectively. For a labeled example 1 ≤ i ≤ l, f(i) is considered fixed to yi.
The inconsistency term (2) can also be written in quadratic form fT∆f , where
f = [f(1), .., f(n)]T and ∆ is known as the combinatorial graph Laplacian ma-
trix defined as ∆ = D − W , where the matrix D is a diagonal matrix whose
entries Dii =

∑n

j=1 wij is the degree of node i. Minimization of E(f) forces f
to take values yi on labeled data points and varies smoothly on unlabeled data
points in accordance with the weight matrix W . It is not difficult to show that
the optimal function is given by:

fU = (DUU − WUU )−1WULfL = −∆−1
UU∆ULfL , (3)

where fU is a vector of function values evaluated on all unlabeled data points,
fL = [y1, y2, . . . , yl]

T, and f = [fL; fU ]. All related matrices are defined as
follows:

W =

(

WLL WLU

WUL WUU

)

, ∆ =

(

∆LL ∆LU

∆UL ∆UU

)

.

The functional (3) is called the soft-label function since its values do not
directly specify the class membership of unlabeled examples, but can be inter-
preted as a probability of being in each class. The most obvious method to
transform soft-label to hard-label is by thresholding, e.g., classify xi, l ≤ i ≤ n,
as being in class 1 if f(i) > 0.5, and in class 0 otherwise. This method generally
works well when the classes are well-separated. However, this is generally not
the case in many practical applications. In such cases, using simple thresholding
may result in an unbalanced classification.

Class Mass Normalization (CMN) is another method to transform the soft-
label to hard-label [3]. The class distribution of the data is adjusted to match
the class priors, that can be obtained from the labeled examples. For example,
if the prior class proportion of class 1 and 0 is p and 1 − p, respectively, then
an unlabeled examples xk is classified as class 1 iff p · (f(k)/

∑

i f(i)) > (1 −
p) · ((1 − f(k))/

∑

i(1 − f(i))). This method works well when we have sufficient
labeled examples to determine the class prior that accurately represents the true
class distribution.

4 Weighted Entropy

We propose a novel technique to perform active learning with graph-based semi-
supervised learning. This active learning technique selects queries from the un-
labeled data by considering their influence on other available examples. Each
unlabeled example is evaluated by looking at the characteristics of the overall



soft-label function when its label is altered. That is, we prefer the example that
if its label is changed, will result in (1) the large change in soft-label values of
other unlabeled examples that can probably alter their class membership and
(2) the large change in soft-label values of other unlabeled examples that rarely
changes the class membership of other examples, but increases the confidence
of the labeling function. We propose weighted entropy as an evaluation function
which can simultaneously take both criteria into account. The criterion function
is derived from the harmonic energy minimization function with the Gaussian
random field model [3].

4.1 Problem Formulation

In graph-based setting, we need to know a soft-label function when different
labels are assigned to unlabeled node k to evaluate its impact to other unlabeled
examples. Thus it is necessary to define an efficient update of soft-label function
after knowing one more label. Following the derivation in [22], we add one new
node with value f0 to the graph. The new node is connected to unlabeled node
k with weight w0. Thus, as w0 → ∞, we effectively assign label f0 to node k.

Note that the harmonic energy minimization function is fU = −∆−1
UU∆ULfL =

(DUU−WUU )−1WULfL. After adding the new node to the graph, let the matrices
D̃UU ,W̃UL, and f̃L be the updated versions of DUU , WUL, and fL, respectively.
Since the new node is a labeled node in the graph, the labeling function can be
updated as

f̃U = (D̃UU − WUU )−1W̃ULf̃L

= (w0ekeT
k + DUU − WUU )−1(w0f0ek + WULfL)

= (w0ekeT
k + ∆UU )−1(w0f0ek + WULfL) , (4)

where ek is a column vector with 1 in position k and 0 elsewhere. Using matrix
inversion lemma, we obtain

(w0ekeT
k + ∆UU )−1 = ∆−1

UU − ∆−1
UU (

√
w0ek)(

√
w0ek)T∆−1

UU

1 + (
√

w0ek)T∆−1
UU (

√
w0ek)

= L−
w0L|kL

1 + w0Lkk

(5)

where we use L to denote ∆−1
UU and L|k is a square matrix with L’s k-th column

and 0 elsewhere. With some calculations, we derive (5) into

f̃U = fU +
w0f0 − w0f(k)

1 + w0Lkk

L·k (6)

where f(k) is the soft-label of unlabeled node k, and L·k is the k-th column
vector in L. To force the label at node k to be f0, we let w0 → ∞ to obtain



f̃U = fU +
f0 − f(k)

Lkk

L·k . (7)

Consequently, we can now formulate the equation to compute the soft-label
function after knowing the label of a particular example. The functional (7) can
be used to compute the possible soft-label functions after assigning different
labels to example xk. For binary classification in which Y = {0, 1}, we obtain

f
(xk,y)
U = fU + (y − f(k))

(∆−1
UU )·k

(∆−1
UU )kk

, (8)

where f
(xk,y)
U is the soft-label function after we assign label y ∈ Y to unlabeled

examples xk.
To derive the evaluation function, we start by defining the uncertainty I(fU,i)

of the soft-label value at node i. The total uncertainty at node i when we as-

sign different labels to example xk is
∑

y∈Y I(f
(xk,y)
U,i ). This work uses entropy

function to measure this uncertainty, i.e., I(fU,i) = −fU,i log2 fU,i. By weighting
each uncertianty term with the probability of xk belonging to each class, we can
write the evaluation function as

C(k) =

u
∑

i=1

∑

y=0,1

p(yk = y|L)I(f
(xk,y)
U,i )

=

u
∑

i=1

∑

y=0,1

−p(yk = y|L)
[

f
(xk,y)
U,i log2 f

(xk,y)
U,i

]

. (9)

This quantity is called the weighted entropy measure. Given a set of label data
L, p(yk = y|L) is the true label distribution at example xk. This term makes
C(k) not computable, however it can still be estimated by the soft-label value,
i.e. , p(yk = 1|L) ≈ fU,k and p(yk = 0|L) ≈ 1 − fU,k. As a result, the estimated

weighted entropy is defined as

Ĉ(k) =

u
∑

i=1

−fU,k

[

f
(xk,1)
U,i log2 f

(xk,1)
U,i

]

− (1 − fU,k)
[

f
(xk,0)
U,i log2 f

(xk,0)
U,i

]

. (10)

The weighted entropy measures how much the selected query affects the
labels of other unlabeled examples when its own label is changed. Note that the
soft-label function determines the probability of examples being in positive class,
i.e., yi = 0 if f(i) ≤ 0.5 and yi = 1 otherwise.

4.2 Analysis of Weighted Entropy

In this work, the query is selected in accordance with the influence when its label
is changed. Given a particular example xk, the behavior of weighted entropy can
be analyzed as follows:



1. The value of weighted entropy is minimized when the expected soft-label

values f
(xk,0)
U and f

(xk,1)
U have large difference, e.g., f

(xk,1)
U is close to 1

and f
(xk,0)
U is close to 0, or vice versa. This means that the example xk

has a significant effect on the soft-label values of other unlabeled examples.
Furthermore, such effect will likely cause the alternation of class membership
of most examples. As a result, this suggests that we should know the true
label of xk as early as possible.

2. The value of weighted entropy is also minimized when both f
(xk,1)
U and f

(xk,0)
U

become closer to the boundary value of the soft-label function. This means
that even if changing the label of xk does not alter labels of other exam-
ples but if it results in more confident labeling function, then xk will be
considered as an important example by weighted entropy measure. In this
case, we can see that the formulation of estimated weighted entropy (10)
is similar to the expected estimated risk defined in [22]. The expected esti-

mated risk is computed by summing a weighted estimated risks of f
(xk,y)
U

using min(f
(xk,y)
U , 1−f

(xk,y)
U ). In contrast, by using the weighted entropy, the

proposed method focuses on the behavior of soft-label values of unlabeled
data when the label of queried example is changed. Therefore, this method
can effectively exploit necessary information needed to evaluated unlabeled
data.

It is worth mentioning that we expect these two cases to happen in different
periods during the query selection process. It is obvious that the queries corre-
sponding to the first case will likely become the most preferable candidates at
the beginning of the process, when labels are prone to change. After some times
when labels become more resistant to change, the most preferable candidates will
fall into the second case, which tends to improve the confidence of the classi-
fier. Therefore, selecting the queries based on the proposed criterion assures that
examples that have negative effects on the performance as a result of learning
process will be discovered as early as possible. Consequently, the query selection
will become safer for the subsequent learning process. The final query selection
criterion (11) called Minimum Weighted Entropy (MinWE) for query selection
is shown below.

Minimum Weighted Entropy

For a set of unlabeled examples U , select an example xk resulting in

k = argmin
k′

Ĉ(k′) , (11)

where Ĉ(k′) is the estimated weighted entropy of xk′ .

Algorithm 1 summarizes the active query selection using minimum weighted
entropy. Note that in each iteration we need to update the inverse graph Lapla-
cian with the row/column for xk removed, whose computational complexity is
O(u3) in general. To avoid the computational cost of the matrix inversion, the



Algorithm 1 Active Query Selection with Minimum Weighted Entropy

1: Choose first r examples randomly.
2: while Need more queries do

3: Update the inverse graph Laplacian ∆−1

UU
.

4: Compute Ĉ(k) using (10) for all xk ∈ U .
5: Query xk according to (11).
6: Receive the answer yk.
7: Add (xk, yk) into L and remove xk from U .
8: end while

matrix inversion lemma is applied to compute this matrix from ∆UU and ∆−1
UU

(see appendix B of [22] for the derivation). As a result, the overall time com-
plexity of the proposed algorithm is O(u2).

5 Experimental Results

5.1 Experimental Setup

In our experiments, Random, MaxUncertain, MinRisk, and MinWE query selection
methods are evaluated on different datasets, namely, handwritten digits dataset3

and benchmark datasets for semi-supervised learning4. All experiments are per-
formed in the transductive setting, i.e., test data coincides with training data
used in the learning process. In each experiment, the first two labeled examples
are chosen by random selection. Since random initialization can consequentially
influence the results, each experiment is repeated 10 times and the average ac-
curacy as well as its ±1 standard deviation are reported.

In Random method, the next instance is queried randomly from a set of avail-
able unlabeled instances. In contrast, the MaxUncertainmethod queries an unla-
beled instance whose soft-label value is closest to 0.5, meaning that the instance
possesses the highest uncertainty on its true label. The MinRisk method selects
an instance that minimizes the expected estimated risk defined in [22]. Similarly,
the MinWE method queries an instance that minimizes the estimated weighted
entropy proposed in this work. For comparison, the classification accuracy at-
tained by each method is evaluated on the unlabeled instances at each iteration
after adding the new query to the set of labeled examples.

5.2 Overview of Results

Figure 1 shows the accuracy and weighted entropy values on handwritten digits
dataset as increasing number of labeled examples are acquired using different
query selection methods. The task is to classify the digit “0” against the digit
“8”. The digits are 16×16 grid, with pixel values ranging from 0 to 255. Thus

3 http://www-i6.informatik.rwth-aachen.de/∼keysers/usps.html
4 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
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Fig. 1. (a) Accuracy and (b) the weighted entropy values on the handwritten digits
dataset(“0” versus “8” classification problem) of four different query selection methods.

each digit is represented by a 256-dimensional vector. The dataset consists of
1,080 images, with 540 images randomly selected from each class. All data points
and their pairwise similarities are represented by a fully connected graph with
weights wij = exp(−d2

ij/0.25), where dij is the Euclidean distance between xi

and xj .

As illustrated in Fig.1(a), Random and MaxUncertain methods achieve ap-
proximately the same level of accuracy, which increases very slowly as the system
acquires more labeled examples. In contrast, the accuracy attained by MinRisk

and MinWE methods rises very rapidly. Although they lead to roughly the same
results in the later stage of the learning process, the MinWE method discloses
the informative queries earlier than the MinRisk method as depicted at the 10th

query in Fig.1(a).

Fig.1(b) shows the weighted entropy value versus the number of labeled exam-
ples. The MinRisk and MinWE methods generate the similar trend of weighted en-
tropy values, which tend to decrease with the increasing number of labeled exam-
ples. Though exhibiting the similar criteria, the MinWE method produces a slighly
lower values of weighted entropy than the MinRisk method. Another interest-
ing point in this experiment is the weighted entropy values of MaxUncertain

method that decrease substantially. According to Fig.3, this case usually occurs
when the values of soft-label are very close to either 0 or 1 because the major-
ity of queries come from the same class. This degenerate case of MaxUncertain
method primarily leads to low accuracy.

Note that an advantage of MinWE method over MinRisk method is the ability
to initially identify important queries that have significant impact on the soft-
label value of other unlabeled examples if their labels are changed. Thus it follows
immediately that imposing the true labels on these examples lessens the label
alteration in the following stages. The MinRisk method choose queries based on
how much they will improve the expected accuracy. It does not take into account
the fact that this improvement can change some of influential examples’ labels
that probably degrades the true accuracy.
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Fig. 2. The percentage of labels on unlabeled examples that change as the increasing
number of labeled examples is obtained in handwritten digits dataset

Figure 2 supports our previous claim on the advantages of MinWE method.
The percentage of label changes in a set of unlabeled examples of handwrit-
ten digits dataset is calculated at each iteration after the next query is ob-
tained. Therefore, this figure nearly reflects the reliability of each query selection
method, i.e., the reliable method rarely alters the labels of examples compared to
unreliable ones. Intuitively, the Random method is unreliable because the labels
frequently change throughout the learning process. Nonetheless, the MinRisk

and MinWE methods are more reliable since the variation of labels occurs essen-
tially in the initial stages of the learning process and then becomes less likely
to occur in the subsequent stages. Moreover, although MinRisk method sub-
stantially lessens the generalization error and the the alteration of labels in the
beginning, the correctness of labeling function at some data points may not be
guaranteed. As a result, obtaining more label examples likely changes labels of
some examples as illustrated in Fig. 2 when there are approximately 8, 32, and
48 labeled examples. Note that, on the other hand, the labels of most influential
queries are assigned in the initial stages by MinWE method. Therefore, the vari-
ation of labels in the subsequent stages is minimized, leading to more reliable
labeling function.

Another issue we want to address in this work is the meaningfulness of the
queries selected by each methods. It is worthwhile to mention because it also
affects the performance of the classifier. If the selected queries are ambiguous,
it is with high chance that the assigned labels will be incorrect and knowing
their labels will not provide any useful information. This problem may not be
recognized in easy tasks such as handwritten recognition or face detection, for



Fig. 3. Top twenty most frequent queries of the handwritten digits obtained during
the learning process using Random, MaxUncertain, MinRisk, and MinWE methods.

example, but it becomes more realistic when we handle the complicated prob-
lems, in which it is not convenient to visualize the data. Figure 3 illustrates the
20 most frequently queried instances across all trials. Each row shows the most
frequent queries, sorted by the number of times they are selected.

Figure 4 shows the results of the experiments on benchmark datasets for semi-
supervised learning. The original benchmark consists of eight datasets, but in this
work we use only six of them to assess the query selection methods5. The datasets
are categorized into two groups. The first group consists of g241c, g241n, and
Digit1, which are artificially created. The second group includes USPS, COIL2,
and BCI, all of which are derived from real data. In addition, the classes of USPS
dataset are imbalanced with relative sizes of 1:4. Thus the performance on these
datasets is the indication of the performance in the real applications. See [23] for
the detail of each dataset. In this experiment, we construct a weighted k nearest
neighbors graph with weights wij = exp(−d2

ij/2σ) if it is an edge between xi

and xj , and 0 otherwise. For all datasets, k = 5 and σ is fixed as the median of
the pairwise distance between adjacent nodes on the graph.

Figure 4 confirms an effectiveness of the proposed query selection method.
As can be seen in figure, the MinWE method outperforms other query selection
methods and is slighly better than MinRisk method in almost all datasets, ex-
cept Digit1 dataset. Other than the superior experimental results on artificial
datasets such as g241c and g241n, MinWE method also achieve the highest ac-
curacy in USPS, COIL2, and BCI datasets that are obtained from the real data.
This is therefore the indication of expected classification performance of MinWE
method in practice.

In almost all datasets, the MaxUncertain query selection method possesses
the lowest accuracy among all other methods. In some datasets, e.g., USPS, label-
ing the most uncertain unlabeled example may harm the accuracy as illustrated

5 The g241c , g241n, Digit1, USPS, COIL2, and BCI datasets are used extensively
to assess the performance of several semi-supervised learning techniques, whereas
few techniques utilize Text and SecStr datasets, which have special characteristics.
Therefore, this work considers only those six datasets for the convenience of the
experiments and the reliability of the results.
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Fig. 4. The accuracy of different query selection methods on benchmark dataset for
semi-supervised learning. The selected datasets includes (a) Digit1, (b) USPS, (c)
COIL2, (d) BCI, (e) g241c, and (f) g241n. The figure presents an average accuracy
and its ±1 standard deviation.

in Fig. 4(b). This underlines the fact that in semi-supervised learning, more la-
beled examples does not mean higher accuracy. Intuitively, the uncertainty on
class membership of a particular instance does not adequately indicate the infor-
mativeness of the instance. The evaluation based on this measure suggests only
that the instance is hard to classify, but does not imply how, after knowing its
label, the instance will influence the rest of unlabeled instances. Consequently,



Table 1. Statistical comparison of query selection methods. The average accuracy of
query selection methods on each dataset (left) and corresponding results of Friedman
and Wilcoxon signed ranks tests (right) are reported.

Random MaxUncertain MinRisk MinWE
Digit1 88.49 93.04 93.57 92.72
USPS 83.71 68.31 81.48 86.23

COIL2 59.06 51.68 65.96 70.44
BCI 50.34 49.91 51.72 52.71

g241c 51.67 50.22 52.30 59.48
g241n 51.41 50.92 52.01 59.38

Test Statistics
Friedman Test N Chi-Square df Sig.

6 11.600 3 .009

Wilcoxon Test Z Sig.
MinWE-Random -2.201 .028

MinWE-MaxUncertain -1.992 .046

MinWE-MinRisk -1.992 .046

in practice, we recommend to use MaxUncertain only for preliminary testing,
especially in the difficult problems, for the following reasons:

1. The uncertainty on class membership does not suggest, neither directly nor
indirectly, the influence of the queried instance on the labels of other in-
stances. Thus providing its label may not considerably improve, but probably
diminish the predictive accuracy.

2. The most uncertain instance is hard not only for the system, but also for
the human annotators to categorize as illustrated in Fig.3. Hence, there is a
high chance that the given label is incorrect or useless.

Fortunately, the MinWE query selection method does not suffer from these
two problems as shown by the experimental results. That is, it evaluates the
informativeness of those instances by the effect they make on the whole dataset.
Therefore, labeling more instances guarantee to improve the predictive perfor-
mance of the classification. It is also worth to note that the MinWE achieve better
classification results than the MinRisk method even though its evaluative mea-
sure does not directly take into account the accuracy of classification, compared
to the estimated risk defined in the MinRisk.

Statistical Comparison To justify that the proposed method significantly
yields an improve performance over the existing query selection methods, we
need to perform a proper statistical test over all datasets with the null hypothesis
that all methods perform equally well. As suggested by [24] we used the Friedman
and Wilcoxon signed ranks tests.

Friedman test is a nonparametric test used to compare three or more ob-
servations repeated on the same subjects. In this case, we compare the average
learning accuracy of four query selection methods over six datasets to inspect
the difference in medians between different methods. Under the null hypothesis,
which states that all methods are equivalent, the Friedman test is found to be
significant χ2(3, N = 6) = 11.6 and p < .01, as shown in Table 1. This merely
indicates the differences in learning accuracy among the four methods.

Next, after obtaining a significant Friedman test, the follow-up tests need to
be conducted to evaluate comparisons between pairs of query selection methods.
As indicated earlier, we use the Wilcoxon signed ranks test. Since we are only



interested in whether the proposed method yields an improved performance over
the existing ones, the pairwise comparisons between the MinWE method and the
others, namely, Random, MaxUncertain, and MinRisk are conducted. The null
hypothesis for each comparison states that there is no difference in learning
accuracy between two methods, whereas alternative hypothesis states that the
first method, i.e., MinRisk, gives higher accuracy than the second one. According
to the result of Wilcoxon test in Table 1, all three comparisons are significant
at the .05 alpha level, leading us to reject the null hypothesis and conclude
that the MinWE method significantly outperforms Random, MaxUncertain, and
MinRisk methods.

6 Conclusions

This paper proposes a new query selection criterion for active learning. The
proposed criterion, called minimum weighted entropy, selects the example for
which the label change results in the largest pertubation of other examples’
label. It relies on a graph-based semi-supervised learning technique to efficiently
compute the weighted entropy for the selection process. Experimental results
show the advantage of the proposed selection criterion over the existing criterion
on several datasets.
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